Let V {\displaystyle {}V} be a C {\displaystyle {}\mathbb {C} } -vector space. A mapping
is called a sesquilinear form, if, for all v ∈ V {\displaystyle {}v\in V} , the induced mappinga
are C {\displaystyle {}\mathbb {C} } -antilinear, and, for all w ∈ V {\displaystyle {}w\in V} , the induced mappings
are C {\displaystyle {}\mathbb {C} } -linear.