Let K {\displaystyle {}K} be a field, let V {\displaystyle {}V} be a K {\displaystyle {}K} -vector space, and let U ⊆ V {\displaystyle {}U\subseteq V} denote a linear subspace. Let u i {\displaystyle {}u_{i}} , i ∈ I {\displaystyle {}i\in I} , denote a basis of U {\displaystyle {}U} , and v j {\displaystyle {}v_{j}} , j ∈ J {\displaystyle {}j\in J} , a family of vectors in V {\displaystyle {}V} . Show that the family u i , i ∈ I , v j , j ∈ J {\displaystyle {}u_{i},i\in I,v_{j},j\in J} , is a basis of V {\displaystyle {}V} if and only if [ v j ] {\displaystyle {}[v_{j}]} , j ∈ J {\displaystyle {}j\in J} , is a basis of the residue class space V / U {\displaystyle {}V/U} .