# User:Watchduck/bin2svg

(Redirected from User:Mate2code/bin2svg)
 Sierpinski triangle drawn with bin2svg — The red squares form one contiguous area with only one edge, so the path contains only one M.

bin2svg is a small program that takes a binary matrix and returns the corresponding SVG path of the area covered by ones.

I initially wrote it in Matlab, and that version is still displayed below. I have translated it into Python, and that version is found here.

Matrices created with this program are marked with {{Created with bin2svg}} and sorted into the hidden category Created with bin2svg.

## Example

>>> from numpy import array
>>> from bin2svg import bin2svg
>>> mat = array([[0, 0, 0, 1], [1, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0]])
>>> mat
array([[0, 0, 0, 1],
[1, 1, 1, 0],
[1, 0, 1, 0],
[1, 1, 1, 0]])
>>> bin2svg(mat)
'M3,0h1v1h-1M0,1h3v3h-3M1,2v1h1v-1'


If the function gets the binary matrix ${\displaystyle {\begin{bmatrix}0&0&0&1\\1&1&1&0\\1&0&1&0\\1&1&1&0\end{bmatrix}}}$ it will create the intermediate matrix ${\displaystyle {\begin{bmatrix}0&0&0&1&2\\1&0&0&24&3\\0&5&8&0&0\\0&6&7&0&0\\4&0&0&3&0\end{bmatrix}}}$ which shows that there are three cycles of corners:
Two on the outside of an area of ones (with clockwise numbers 1...4) and one hole (with anticlockwise numbers 5...8). (The 24 is a 2 and a 4 in the same place.)
The outside cycles give the paths M3,0 h1 v1 h-1 and M0,1 h3 v3 h-3, and the hole gives M1,2 v1 h1 v-1.
So the output of the function is M3,0h1v1h-1M0,1h3v3h-3M1,2v1h1v-1.

In the following SVG code the result produces the image shown on the right:

<?xml version = "1.0" encoding = "UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg" width="100" height="100" viewBox="-.5 -.5 5 5">
<path fill="#fff" d="m0,0h4v4H0"/> <!-- white background -->
<path fill="#f00" d="M3,0h1v1h-1M0,1h3v3h-3M1,2v1h1v-1"/> <!-- red entries -->
<g stroke="#000">
<path stroke-width="4" stroke-dasharray=".05,.95" d="M0,2h5M2,0v5"/> <!-- 0.5px black lines -->
<rect stroke-width=".1" fill="none" x="0" y="0" width="4" height="4"/> <!-- 1px black square -->
</g>
</svg>


## Derived functions for integer matrices

 Binary strings created with mat2svg(Matrix,4,5,2)Binary matrices below are created with mat2svg_dual(Matrix,4,3) Binary strings created with mat2svg(Matrix,16,8,2)Binary matrices below are created with mat2svg_dual(Matrix,16,2)

### mat2svg

function [Code] = mat2svg(Mat,Bitlong,Gapvert,Gaphorz)
% Produces the SVG code for binary strings in an SVG graphic of a matrix of integers.
% Inputs: ( matrix, length of binary strings, size of vertical gaps, size of horizontal gaps )

% used functions: bin2svg, char2mat

Matvert = size(Mat,1) ;
Mathorz = size(Mat,2) ;

Bin = zeros(   Matvert + (Matvert-1)*Gapvert   ,   Mathorz*Bitlong + (Mathorz-1)*Gaphorz   ) ;

for m=1:Matvert
for n=1:Mathorz
Bin( (m-1)*(Gapvert+1)+1 , (n-1)*(Bitlong+Gaphorz)+1 : (n-1)*(Bitlong+Gaphorz)+Bitlong ) = char2mat( dec2bin(Mat(m,n),Bitlong) ) ;
end
end

Code = bin2svg( Bin ) ;

end


### mat2svg_dual

function [Code] = mat2svg_dual(Mat,Bitlong,Gap)
% Produces the SVG code for binary dual matrix in an SVG graphic of a matrix of integers.
% Inputs: ( matrix, length of binary strings, size of gap between matrices )

% used functions: bin2svg, char2mat

Matvert = size(Mat,1) ;
Mathorz = size(Mat,2) ;

Binmat = zeros(   Matvert   ,   Mathorz*Bitlong + (Bitlong-1)*Gap   ) ;

for m=1:Matvert
for n=1:Mathorz
Binvect = char2mat( dec2bin(Mat(m,n),Bitlong) ) ;
for k=1:Bitlong
Binmat( m , (Mathorz+Gap)*(k-1)+n ) = Binvect(k) ;
end
end
end

Code = bin2svg( Binmat ) ;

end