User:CQ/OSI

From Wikiversity
Jump to navigation Jump to search

OK OpenKollab .. here we go again

Long Cycle[edit]

The past
Remember: Library customers are encouraged to take advantage of the Internet’s resources using good judgment and discretion.
The present

The time on the server as this page was accessed was: 1574331821 Seconds since January 1 1970 00:00:00 GMT (UTC).

  • Hour:10 since Midnight
    • Minute:23 since the top of the hour
      • Second:41 the second of the minute

Today's date: Thursday - 21 November 2019

  • Year:2019
    • Month:11
      • Day:21
    • Week:47
      • Day:4
    • Day:324
The future
Anticipate: It's in your hands now.

Local Focus Hocus Pocus[edit]

Beginning now, this is the main build for:

  • A. virtual transport for OzoneFarm/ObjectPro topshelf deliverables
  • B. context layers for cooperative web platform development
  • C. generic real-time spontaneous capture requirements and specifications
  • D. equivalency tests for interoperability and cultural-linguistic appropriation
  • E. electronic interface considerations involving non-technical personnel
  • F. link table for ALL personnel touched by my thinking
  • G. how to find me after my demise

I'll be implementing ONLY open source liberating/liberated abundance-weighted social ecology motivated creative commons architecture and not-for-profit hosting. Thank you Wikimedia!

Description of OSI layers[edit]

The recommendation X.200 describes seven layers, labeled 1 to 7. Layer 1 is the lowest layer in this model.

OSI Model
Layer Protocol data unit (PDU) Function[1]
Host
layers
7. Application Data High-level APIs, including resource sharing, remote file access
6. Presentation Translation of data between a networking service and an application; including character encoding, data compression and encryption/decryption
5. Session Managing communication sessions, i.e. continuous exchange of information in the form of multiple back-and-forth transmissions between two nodes
4. Transport Segment (TCP) / Datagram (UDP) Reliable transmission of data segments between points on a network, including segmentation, acknowledgement and multiplexing
Media
layers
3. Network Packet Structuring and managing a multi-node network, including addressing, routing and traffic control
2. Data link Frame Reliable transmission of data frames between two nodes connected by a physical layer
1. Physical Bit Transmission and reception of raw bit streams over a physical medium

At each level N, two entities at the communicating devices (layer N peers) exchange protocol data units (PDUs) by means of a layer N protocol. Each PDU contains a payload, called the service data unit (SDU), along with protocol-related headers or footers.

Data processing by two communicating OSI-compatible devices is done as such:

  1. The data to be transmitted is composed at the topmost layer of the transmitting device (layer N) into a protocol data unit (PDU).
  2. The PDU is passed to layer N-1, where it is known as the service data unit (SDU).
  3. At layer N-1 the SDU is concatenated with a header, a footer, or both, producing a layer N-1 PDU. It is then passed to layer N-2.
  4. The process continues until reaching the lowermost level, from which the data is transmitted to the receiving device.
  5. At the receiving device the data is passed from the lowest to the highest layer as a series of SDUs while being successively stripped from each layer's header or footer, until reaching the topmost layer, where the last of the data is consumed.

Some orthogonal aspects, such as management and security, involve all of the layers (See ITU-T X.800 Recommendation[2]). These services are aimed at improving the CIA triad - confidentiality, integrity, and availability - of the transmitted data. In practice, the availability of a communication service is determined by the interaction between network design and network management protocols. Appropriate choices for both of these are needed to protect against denial of service.[citation needed]

Layer 1: Physical Layer[edit]

[Rewrite to improve clarity]

The physical layer defines the electrical and physical specifications of the data connection. It defines the relationship between a device and a physical transmission medium (for example, an electrical cable, an optical fiber cable, or a radio frequency link). This includes the layout of pins, voltages, line impedance, cable specifications, signal timing and similar characteristics for connected devices and frequency (5 GHz or 2.4 GHz etc.) for wireless devices. It is responsible for transmission and reception of unstructured raw data in a physical medium. Bit rate control is done at the physical layer. It may define transmission mode as simplex, half duplex, and full duplex. It defines the network topology as bus, mesh, or ring being some of the most common.

The physical layer is the layer of low-level networking equipment, such as some hubs, cabling, and repeaters. The physical layer is never concerned with protocols or other such higher-layer items. Examples of hardware in this layer are network adapters, repeaters, network hubs, modems, and fiber media converters.

Layer 2: Data Link Layer[edit]

The data link layer provides node-to-node data transfer—a link between two directly connected nodes. It detects and possibly corrects errors that may occur in the physical layer. It defines the protocol to establish and terminate a connection between two physically connected devices. It also defines the protocol for flow control between them.

IEEE 802 divides the data link layer into two sublayers:[3]

  • Media access control (MAC) layer – responsible for controlling how devices in a network gain access to a medium and permission to transmit data.
  • Logical link control (LLC) layer – responsible for identifying and encapsulating network layer protocols, and controls error checking and frame synchronization.

The MAC and LLC layers of IEEE 802 networks such as 802.3 Ethernet, 802.11 Wi-Fi, and 802.15.4 ZigBee operate at the data link layer.

The Point-to-Point Protocol (PPP) is a data link layer protocol that can operate over several different physical layers, such as synchronous and asynchronous serial lines.

The ITU-T G.hn standard, which provides high-speed local area networking over existing wires (power lines, phone lines and coaxial cables), includes a complete data link layer that provides both error correction and flow control by means of a selective-repeat sliding-window protocol.

Layer 3: Network Layer[edit]

The network layer provides the functional and procedural means of transferring variable length data sequences (called datagrams) from one node to another connected in "different networks". A network is a medium to which many nodes can be connected, on which every node has an address and which permits nodes connected to it to transfer messages to other nodes connected to it by merely providing the content of a message and the address of the destination node and letting the network find the way to deliver the message to the destination node, possibly routing it through intermediate nodes. If the message is too large to be transmitted from one node to another on the data link layer between those nodes, the network may implement message delivery by splitting the message into several fragments at one node, sending the fragments independently, and reassembling the fragments at another node. It may, but does not need to, report delivery errors.

Message delivery at the network layer is not necessarily guaranteed to be reliable; a network layer protocol may provide reliable message delivery, but it need not do so.

A number of layer-management protocols, a function defined in the management annex, ISO 7498/4, belong to the network layer. These include routing protocols, multicast group management, network-layer information and error, and network-layer address assignment. It is the function of the payload that makes these belong to the network layer, not the protocol that carries them.[4]

Layer 4: Transport Layer[edit]

The transport layer provides the functional and procedural means of transferring variable-length data sequences from a source to a destination host via one or more networks, while maintaining the quality of service functions.

An example of a transport-layer protocol in the standard Internet stack is Transmission Control Protocol (TCP), usually built on top of the Internet Protocol (IP).

The transport layer controls the reliability of a given link through flow control, segmentation/desegmentation, and error control. Some protocols are state- and connection-oriented. This means that the transport layer can keep track of the segments and re-transmit those that fail. The transport layer also provides the acknowledgement of the successful data transmission and sends the next data if no errors occurred. The transport layer creates packets out of the message received from the application layer. Packetizing is a process of dividing the long message into smaller messages.

OSI defines five classes of connection-mode transport protocols ranging from class 0 (which is also known as TP0 and provides the fewest features) to class 4 (TP4, designed for less reliable networks, similar to the Internet). Class 0 contains no error recovery, and was designed for use on network layers that provide error-free connections. Class 4 is closest to TCP, although TCP contains functions, such as the graceful close, which OSI assigns to the session layer. Also, all OSI TP connection-mode protocol classes provide expedited data and preservation of record boundaries. Detailed characteristics of TP0-4 classes are shown in the following table:[5]

Feature name TP0 TP1 TP2 TP3 TP4
Connection-oriented network Yes Yes Yes Yes Yes
Connectionless network No No No No Yes
Concatenation and separation No Yes Yes Yes Yes
Segmentation and reassembly Yes Yes Yes Yes Yes
Error recovery No Yes Yes Yes Yes
Reinitiate connectionTemplate:Smallsup No Yes No Yes No
Multiplexing / demultiplexing over single virtual circuit No No Yes Yes Yes
Explicit flow control No No Yes Yes Yes
Retransmission on timeout No No No No Yes
Reliable transport service No Yes No Yes Yes
a If an excessive number of PDUs are unacknowledged.

An easy way to visualize the transport layer is to compare it with a post office, which deals with the dispatch and classification of mail and parcels sent. Do remember, however, that a post office manages the outer envelope of mail. Higher layers may have the equivalent of double envelopes, such as cryptographic presentation services that can be read by the addressee only. Roughly speaking, tunneling protocols operate at the transport layer, such as carrying non-IP protocols such as IBM's SNA or Novell's IPX over an IP network, or end-to-end encryption with IPsec. While Generic Routing Encapsulation (GRE) might seem to be a network-layer protocol, if the encapsulation of the payload takes place only at endpoint, GRE becomes closer to a transport protocol that uses IP headers but contains complete frames or packets to deliver to an endpoint. L2TP carries PPP frames inside transport packet.

Although not developed under the OSI Reference Model and not strictly conforming to the OSI definition of the transport layer, the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) of the Internet Protocol Suite are commonly categorized as layer-4 protocols within OSI.

Layer 5: Session Layer[edit]

The session layer controls the dialogues (connections) between computers. It establishes, manages and terminates the connections between the local and remote application. It provides for full-duplex, half-duplex, or simplex operation, and establishes checkpointing, adjournment, termination, and restart procedures. The OSI model made this layer responsible for graceful close of sessions, which is a property of the Transmission Control Protocol, and also for session checkpointing and recovery, which is not usually used in the Internet Protocol Suite. The session layer is commonly implemented explicitly in application environments that use remote procedure calls.

Layer 6: Presentation Layer[edit]

The presentation layer establishes context between application-layer entities, in which the application-layer entities may use different syntax and semantics if the presentation service provides a mapping between them. If a mapping is available, presentation service data units are encapsulated into session protocol data units and passed down the protocol stack.

This layer provides independence from data representation by translating between application and network formats. The presentation layer transforms data into the form that the application accepts. This layer formats data to be sent across a network. It is sometimes called the syntax layer.[6] The presentation layer can include compression functions.[7] The Presentation Layer negotiates the Transfer Syntax.

The original presentation structure used the Basic Encoding Rules of Abstract Syntax Notation One (ASN.1), with capabilities such as converting an EBCDIC-coded text file to an ASCII-coded file, or serialization of objects and other data structures from and to XML. ASN.1 effectively makes an application protocol invariant with respect to syntax.

Layer 7: Application Layer[edit]

The application layer is the OSI layer closest to the end user, which means both the OSI application layer and the user interact directly with the software application. This layer interacts with software applications that implement a communicating component. Such application programs fall outside the scope of the OSI model. Application-layer functions typically include identifying communication partners, determining resource availability, and synchronizing communication. When identifying communication partners, the application layer determines the identity and availability of communication partners for an application with data to transmit. The most important distinction in the application layer is the distinction between the application-entity and the application. For example, a reservation website might have two application-entities: one using HTTP to communicate with its users, and one for a remote database protocol to record reservations. Neither of these protocols have anything to do with reservations. That logic is in the application itself. The application layer per se has no means to determine the availability of resources in the network.

  1. "The OSI Model's Seven Layers Defined and Functions Explained". Microsoft Support. Retrieved 2014-12-28.
  2. Cite error: Invalid <ref> tag; no text was provided for refs named x800
  3. "5.2 RM description for end stations". IEEE Std 802-2014, IEEE Standard for Local and Metropolitan Area Networks: Overview and Architecture. ieee.
  4. International Organization for Standardization (1989-11-15). "ISO/IEC 7498-4:1989 -- Information technology -- Open Systems Interconnection -- Basic Reference Model: Naming and addressing". ISO Standards Maintenance Portal. ISO Central Secretariat. Retrieved 2015-08-17.
  5. "ITU-T Recommendation X.224 (11/1995) ISO/IEC 8073, Open Systems Interconnection - Protocol for providing the connection-mode transport service". ITU.
  6. Grigonis, Richard (2000). Computer telephony- encyclopaedia. CMP. p. 331. ISBN 9781578200450.
  7. "ITU-T X.200 - Information technology – Open Systems Interconnection – Basic Reference Model: The basic model".