# UsEGM6321.F10.TEAM1.WILKS/Mtg1

EGM6321 - Principles of Engineering Analysis 1, Fall 2009

Mtg 1: Tue, 25 Aug 09

### Page 1-1

1-1 defined as (Meeting Number) - (Slide Number)
German Transrapid Emsland 500 km/h , youtube, Uploaded by TransrapidSupporter on Feb 14, 2007
Vu-Quoc & Olson (1989) CMAME
The magnet (i.e vehicle) and structure (i.e. guideway) interaction is shown below. Where:
$y^{1}(t)=\$ nominal motion
$u^{1}(s,t)=\$ axial displacement of guideway
$u^{2}(s,t)=\$ transversal displacement of guideway

### Page 1-2

$f(y^{1}(t),t)\$ Total time derivative of f is given as:

 \displaystyle {\begin{aligned}{\frac {d}{dt}}f(y^{1}(t),t)={\frac {\partial f}{\partial s}}(y^{1}(t),t){\dot {y}}^{1}(t)+{\frac {\partial f}{\partial t}}(y^{1}(t),t)\end{aligned}} (1)

Where ${\dot {y}}^{1}(t)={\frac {d}{dt}}y^{1}(t)\$ ${\frac {d}{dt}}f=f_{,s}(y^{1},t){\dot {y}}^{1}+f_{,t}(y^{1},t)$ \displaystyle {\begin{aligned}{\frac {d^{2}}{dt^{2}}}f=f_{,s}(y^{1},t){\ddot {y}}^{1}+f_{,ss}(y^{1},t)({\dot {y}}^{'})+2f_{,st}(y^{1},t){\dot {y}}^{1}+f_{,tt}(y^{1},t)\end{aligned}} (2)

Where ${\dot {y}}^{'}={\dot {y}}^{2}$ Coriolis forces - Dynamics

Material time derivative - Continuum Mechanics

Reynolds transport theorem - Continuum Mechanics

 \displaystyle {\begin{aligned}c_{3}(y',t){\ddot {y}}^{1}+c_{2}(y^{1},t)({\dot {y}}^{1})^{2}+c_{1}(y^{1},t){\dot {y}}^{1}+c_{0}(y^{1},t)=0\end{aligned}} (3)

is an example of a nonlinear ordinary differential equation (ODE)