# Function/Trigonometry Function

(Redirected from Trigonometry Function)
 Trignometry Function Definition Mathematical Formula Graphs Sin Opposite side over hypotnuse ${\displaystyle \sin A={\frac {a}{h}}}$ Cos Adjacent side over hypotnuse ${\displaystyle \cos A={\frac {b}{h}}}$ Tang Opposite over Adjacent ${\displaystyle \tan A={\frac {a}{b}}}$ Cotan Adjacent over opposite ${\displaystyle \cot A={\frac {b}{a}}}$ Sec 1 over opposite ${\displaystyle \sec A={\frac {h}{b}}}$ Cosec 1 over adjacent ${\displaystyle \csc A={\frac {h}{a}}}$
 Periodic ${\displaystyle \sin(x)=\sin(x+2k\pi )\,}$${\displaystyle \cos(x)=\cos(x+2k\pi )\,}$${\displaystyle \tan(x)=\tan(x+k\pi )\,}$ Symmetry ${\displaystyle \sin(-x)=-\sin(x)\,}$${\displaystyle \cos(-x)=\;\cos(x)\,}$${\displaystyle \tan(-x)=-\tan(x)\,}$ Phase shift ${\displaystyle \sin(x)=\cos \left({\frac {\pi }{2}}-x\right)}$${\displaystyle \cos(x)=\sin \left({\frac {\pi }{2}}-x\right)}$ ${\displaystyle \tan(x)=\cot \left({\frac {\pi }{2}}-x\right)}$ Complex Power ${\displaystyle \cos(x)={\frac {e^{ix}+e^{-ix}}{2}}\;}$${\displaystyle \sin(x)={\frac {e^{ix}-e^{-ix}}{2i}}\;}$với ${\displaystyle i^{2}=-1.\,}$${\displaystyle e^{\imath x}=\cos(x)+\imath \sin(x)\,}$và${\displaystyle \imath ={\sqrt {-1}}.\,}$công thức de Moivre${\displaystyle \cos(nx)+i\sin(nx)=(\cos(x)+i\sin(x))^{n}\,}$ Limit ${\displaystyle \lim _{x\rightarrow 0}{\frac {\sin(x)}{x}}=1,}$${\displaystyle \lim _{x\rightarrow 0}{\frac {1-\cos(x)}{x}}=0,}$ Derative ${\displaystyle {d \over dx}\cos(x)=-\sin(x)}$${\displaystyle {d \over dx}\sin(x)=\cos(x)}$