Let G ⊆ SO 3 ( R ) {\displaystyle {}G\subseteq \operatorname {SO} _{3}\!{\left(\mathbb {R} \right)}} be a finite subgroup of the group of proper linear isometries in R 3 {\displaystyle {}\mathbb {R} ^{3}} of type ( 2 , 2 , k ) {\displaystyle {}(2,2,k)} .
isomorphic to the dihedral group