Exercises
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space . Show that the
open balls
U
(
x
,
ϵ
)
{\displaystyle {}U{\left(x,\epsilon \right)}}
are
open .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space . Show that the
closed balls
B
(
x
,
ϵ
)
{\displaystyle {}B\left(x,\epsilon \right)}
are
closed .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
P
∈
M
{\displaystyle {}P\in M}
be a point. Show that
{
P
}
{\displaystyle {}\{P\}}
is
closed .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space . Show that the following properties hold.
The
empty set
∅
{\displaystyle {}\emptyset }
and the total space
M
{\displaystyle {}M}
are
open .
Let
I
{\displaystyle {}I}
be an arbitrary index set, and let
U
i
{\displaystyle {}U_{i}}
,
i
∈
I
{\displaystyle {}i\in I}
,
denote open sets. Then also the
union
⋃
i
∈
I
U
i
{\displaystyle \bigcup _{i\in I}U_{i}}
is open.
Let
I
{\displaystyle {}I}
be a finite index set, and let
U
i
{\displaystyle {}U_{i}}
,
i
∈
I
{\displaystyle {}i\in I}
,
be open sets. Then also the
intersection
⋂
i
∈
I
U
i
{\displaystyle \bigcap _{i\in I}U_{i}}
is open.
Let
X
{\displaystyle {}X}
be a
Hausdorff space,
and let
Y
⊆
X
{\displaystyle {}Y\subseteq X}
be a subset that carries the
induced topology.
Let
Y
{\displaystyle {}Y}
be
compact .
Show that
Y
{\displaystyle {}Y}
is
closed
in
X
{\displaystyle {}X}
.
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and
m
∈
M
{\displaystyle {}m\in M}
.
Show that the constant mapping
f
:
L
⟶
M
,
x
⟼
m
,
{\displaystyle f\colon L\longrightarrow M,x\longmapsto m,}
is
continuous .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space . Show that the identity
M
⟶
M
,
x
⟼
x
,
{\displaystyle M\longrightarrow M,x\longmapsto x,}
is
continuous .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
T
⊆
M
{\displaystyle {}T\subseteq M}
denote a subset, equipped with the
induced metric.
Show that the inclusion
T
⊆
M
{\displaystyle {}T\subseteq M}
is
continuous .
Let
V
{\displaystyle {}V}
be a
normed
K
{\displaystyle {}{\mathbb {K} }}
-vector space ,
and let
φ
w
:
V
⟶
V
,
v
⟼
v
+
w
,
{\displaystyle \varphi _{w}\colon V\longrightarrow V,v\longmapsto v+w,}
denote the translation with the vector
w
∈
V
{\displaystyle {}w\in V}
.
Show that
φ
w
{\displaystyle {}\varphi _{w}}
is
continuous .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
f
:
M
⟶
R
{\displaystyle f\colon M\longrightarrow \mathbb {R} }
denote a
continuous function.
Let
x
∈
M
{\displaystyle {}x\in M}
be a point with
f
(
x
)
>
0
{\displaystyle {}f(x)>0}
.
Show that also
f
(
y
)
>
0
{\displaystyle {}f(y)>0}
holds for all
y
{\displaystyle {}y}
from an open ball neighbourhood of
x
{\displaystyle {}x}
.
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
a
<
b
<
c
{\displaystyle {}a<b<c}
be
real numbers .
Let
f
:
[
a
,
b
]
⟶
M
{\displaystyle f\colon [a,b]\longrightarrow M}
and
g
:
[
b
,
c
]
⟶
M
{\displaystyle g\colon [b,c]\longrightarrow M}
be
continuous mappings
with
f
(
b
)
=
g
(
b
)
{\displaystyle {}f(b)=g(b)}
.
Show that the mapping
h
:
[
a
,
c
]
⟶
M
{\displaystyle h\colon [a,c]\longrightarrow M}
given by
h
(
t
)
=
f
(
t
)
for
t
≤
b
and
h
(
t
)
=
g
(
t
)
for
t
>
b
{\displaystyle h(t)=f(t){\text{ for }}t\leq b{\text{ and }}h(t)=g(t){\text{ for }}t>b}
is also continuous.
Show that the
addition
K
×
K
⟶
K
,
(
x
,
y
)
⟼
x
+
y
,
{\displaystyle {\mathbb {K} }\times {\mathbb {K} }\longrightarrow {\mathbb {K} },(x,y)\longmapsto x+y,}
and the
multiplication
K
×
K
⟶
K
,
(
x
,
y
)
⟼
x
⋅
y
,
{\displaystyle {\mathbb {K} }\times {\mathbb {K} }\longrightarrow {\mathbb {K} },(x,y)\longmapsto x\cdot y,}
are
continuous .
Show that a
polynomial function
f
:
R
n
⟶
R
,
(
x
1
,
…
,
x
n
)
⟼
f
(
x
1
,
…
,
x
n
)
,
{\displaystyle f\colon \mathbb {R} ^{n}\longrightarrow \mathbb {R} ,(x_{1},\ldots ,x_{n})\longmapsto f(x_{1},\ldots ,x_{n}),}
is
continuous .
Show that a real quadric, that is, the zero set given by a real polynomial of degree two, is a
closed subset
of
R
n
{\displaystyle {}\mathbb {R} ^{n}}
.
Does that also hold for the zero set of a polynomial of higher degree?
Let
L
,
M
,
N
{\displaystyle {}L,M,N}
be
metric spaces ,
and let
f
:
L
⟶
M
and
g
:
M
⟶
N
{\displaystyle f:L\longrightarrow M\,\,{\text{ and }}\,\,g:M\longrightarrow N}
mappings .
Suppose that
f
{\displaystyle {}f}
is
continuous
in
x
∈
L
{\displaystyle {}x\in L}
,
and that
g
{\displaystyle {}g}
is continuous in
f
(
x
)
∈
M
{\displaystyle {}f(x)\in M}
.
Show that the
composition
g
∘
f
:
L
⟶
N
,
x
⟼
g
(
f
(
x
)
)
,
{\displaystyle g\circ f\colon L\longrightarrow N,x\longmapsto g(f(x)),}
is continuous in
x
{\displaystyle {}x}
.
Show that the
function
C
⟶
C
,
z
⟼
|
z
|
,
{\displaystyle \mathbb {C} \longrightarrow \mathbb {C} ,z\longmapsto \vert {z}\vert ,}
is
continuous.
Show that the function
f
:
R
2
⟶
R
,
(
x
,
y
)
⟼
max
(
x
,
y
)
,
{\displaystyle f\colon \mathbb {R} ^{2}\longrightarrow \mathbb {R} ,(x,y)\longmapsto {\max {\left(x,y\right)}},}
is
continuous .
We consider the
function
f
:
R
2
⟶
R
{\displaystyle f\colon \mathbb {R} ^{2}\longrightarrow \mathbb {R} }
given by
f
(
x
,
y
)
:=
{
0
,
if
x
≤
0
,
0
,
if
y
≤
0
,
y
/
x
,
if
x
≥
y
>
0
,
x
/
y
,
if
y
>
x
>
0
.
{\displaystyle {}f(x,y):={\begin{cases}0\,,{\text{ if }}x\leq 0\,,\\0\,,{\text{ if }}y\leq 0\,,\\y/x\,,{\text{ if }}x\geq y>0\,,\\x/y\,,{\text{ if }}y>x>0\,.\end{cases}}\,}
Show that the restriction of
f
{\displaystyle {}f}
to every line that is parallel to the
x
{\displaystyle {}x}
-axis or to the
y
{\displaystyle {}y}
-axis is
continuous ,
but
f
{\displaystyle {}f}
itself is not continuous.
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
T
⊆
M
{\displaystyle {}T\subseteq M}
denote a notleere subset. Show that via
d
T
(
x
)
:=
inf
(
d
(
x
,
y
)
,
y
∈
T
)
{\displaystyle {}d_{T}(x):=\inf {\left(d(x,y),\,y\in T\right)}\,}
we get a well-defined
continuous function
M
→
R
{\displaystyle {}M\rightarrow \mathbb {R} }
.
Let
V
{\displaystyle {}V}
be an infinite-dimensional
normed
R
{\displaystyle {}\mathbb {R} }
-vector space .
Show that there exists a
linear mapping
V
⟶
R
{\displaystyle V\longrightarrow \mathbb {R} }
that is not
continuous .
Let
(
M
,
d
)
{\displaystyle {}(M,d)}
be a
metric space , and let
(
x
n
)
n
∈
N
{\displaystyle {}{\left(x_{n}\right)}_{n\in \mathbb {N} }}
denote a
sequence
in
M
{\displaystyle {}M}
. Show that the sequence
converges
in the sense of a metric space if and only if the sequence
converges
in the sense of topology.
Let
X
{\displaystyle {}X}
and
Y
{\displaystyle {}Y}
be
topological spaces ,
and let
φ
:
X
⟶
Y
{\displaystyle \varphi \colon X\longrightarrow Y}
denote a
continuous mapping.
Let
X
{\displaystyle {}X}
be
compact .
Show that the
image
φ
(
X
)
⊆
Y
{\displaystyle {}\varphi (X)\subseteq Y}
is also compact.
Show that the
open unit interval
]
0
,
1
[
{\displaystyle {}]0,1[}
and the
closed unit interval
[
0
,
1
]
{\displaystyle {}[0,1]}
are not
homeomorphic.
Show that the mapping
[
0
,
2
π
[
⟶
S
1
,
t
⟼
(
cos
t
,
sin
t
)
,
{\displaystyle [0,2\pi [\longrightarrow S^{1},t\longmapsto \left(\cos t,\,\sin t\right),}
between the half-open interval
[
0
,
2
π
[
{\displaystyle {}[0,2\pi [}
and the unit circle
S
1
=
{
P
∈
R
2
∣
‖
P
‖
=
1
}
{\displaystyle {}S^{1}={\left\{P\in \mathbb {R} ^{2}\mid \Vert {P}\Vert =1\right\}}\,}
is
continuous
and
bijective ,
and that the inverse mapping is not continuous.
For an arbitrary set
M
{\displaystyle {}M}
, we can define a
metric
via
d
(
x
,
y
)
:=
{
0
,
if
x
=
y
,
1
,
if
x
≠
y
.
{\displaystyle {}d(x,y):={\begin{cases}0,\,&{\text{ if }}x=y\,,\\1,\,&{\text{ if }}x\neq y\,.\end{cases}}\,\,}
This is called the discrete metric .
Let
X
=
R
n
{\displaystyle {}X=\mathbb {R} ^{n}}
,
equipped with the
Euclidean metric ,
and
Y
=
R
n
{\displaystyle {}Y=\mathbb {R} ^{n}}
,
equipped with the
discrete metric .
Let
f
:
Y
⟶
X
{\displaystyle f\colon Y\longrightarrow X}
be the
identity .
Show that
f
{\displaystyle {}f}
is
continuous
but the
inverse mapping
f
−
1
{\displaystyle {}f^{-1}}
is not continuous.
Let
X
{\displaystyle {}X}
be a nonempty set equipped with the
discrete metric .
Show that a
continuous mapping
f
:
R
⟶
X
{\displaystyle f\colon \mathbb {R} \longrightarrow X}
is
constant.
Let
K
=
R
{\displaystyle {}{\mathbb {K} }=\mathbb {R} }
or
=
C
{\displaystyle {}=\mathbb {C} }
. Let
H
⊂
K
n
+
1
{\displaystyle {}H\subset {\mathbb {K} }^{n+1}}
be an
n
{\displaystyle {}n}
-dimensional
affine subspace
that does not contain the origin, and let
H
~
{\displaystyle {}{\tilde {H}}}
denote the linear subspace parallel to
H
{\displaystyle {}H}
. Let
U
⊆
H
{\displaystyle {}U\subseteq H}
be a subset that is open in
H
≅
K
n
{\displaystyle {}H\cong {\mathbb {K} }^{n}}
(in the metric topology),
and let
V
{\displaystyle {}V}
denote the union of all lines through the origin and through a point of
U
{\displaystyle {}U}
. Show that the intersection of
V
{\displaystyle {}V}
with
K
n
+
1
∖
H
~
{\displaystyle {}{\mathbb {K} }^{n+1}\setminus {\tilde {H}}}
is open.
Hand-in-exercises
Let
V
⊆
R
n
{\displaystyle {}V\subseteq \mathbb {R} ^{n}}
be a
linear subspace
in the
Euclidean space
R
n
{\displaystyle {}\mathbb {R} ^{n}}
. Show that
V
{\displaystyle {}V}
is
closed
in
R
n
{\displaystyle {}\mathbb {R} ^{n}}
.
Let
V
{\displaystyle {}V}
be a
Euclidean space .
Show that the
norm
V
⟶
R
,
v
⟼
‖
v
‖
,
{\displaystyle V\longrightarrow \mathbb {R} ,v\longmapsto \Vert {v}\Vert ,}
is a
continuous mapping .
Let
φ
:
R
n
⟶
R
m
{\displaystyle \varphi \colon \mathbb {R} ^{n}\longrightarrow \mathbb {R} ^{m}}
be
continuous
and additive, that is, we have
φ
(
x
+
y
)
=
φ
(
x
)
+
φ
(
y
)
{\displaystyle {}\varphi (x+y)=\varphi (x)+\varphi (y)}
for all
x
,
y
∈
R
n
{\displaystyle {}x,y\in \mathbb {R} ^{n}}
.
Show that
φ
{\displaystyle {}\varphi }
is
R
{\displaystyle {}\mathbb {R} }
-linear .
Suppose that in the origin
0
∈
R
3
{\displaystyle {}0\in \mathbb {R} ^{3}}
,
there is the pupil of an eye
(or just a small hole),
and in the plane determined by
x
=
−
1
{\displaystyle {}x=-1}
,
we have a retina
N
≅
R
2
{\displaystyle {}N\cong \mathbb {R} ^{2}}
(or a photographic plate).
Determine the
mapping
R
+
×
R
×
R
⟶
R
2
{\displaystyle \mathbb {R} _{+}\times \mathbb {R} \times \mathbb {R} \longrightarrow \mathbb {R} ^{2}}
that describes the natural vision
(or taking a photo)
(that is, a point of the half space is mapped through the pupil to a point of the retina).
Is this mapping
continuous ?
It is
linear ?