Show that for an hermitian form ⟨ − , − ⟩ {\displaystyle {}\left\langle -,-\right\rangle } on a C {\displaystyle {}\mathbb {C} } -vector space V {\displaystyle {}V} , the values ⟨ v , v ⟩ {\displaystyle {}\left\langle v,v\right\rangle } for v ∈ V {\displaystyle {}v\in V} are always real.