# Fundamental Physics/Electromagnetic heat

## Electromagnetic heat

It is found that electromagnetic conductor generates electromagnetic heat when connect with electric current

## Conductor and electromagnetic heat energy

### With a straight wire conductor

Electromagnetic heat is in the form of Electromagnetic heat energy, $E_{R}$ $B_{R}=Li={\frac {\mu }{2\pi r}}i$ $R(T)=R_{o}+nT$ $R(T)=R_{o}e^{nT}$ $E_{R}=i^{2}R(T)=mC\Delta T=pv$ $m={\frac {E_{R}}{C\Delta T}}$ $v={\frac {mC\Delta T}{p}}$ In general,

$pv=mC\Delta T$ ### With a magnetic coil conductor

Electromagnetic heat is in the form of Radiant photon heat energy, $E_{o}$ $B_{o}=Li=\mu _{o}{\frac {Ni}{l}}$ $E_{o}=hf_{o}$ $f_{o}={\frac {\omega _{o}}{\lambda _{o}}}={\frac {C}{\lambda _{o}}}$ $h=p\lambda _{o}={\frac {pC}{f_{o}}}$ In general,

$pC=hf_{o}$ ### Electric photon heat energy

Electromagnetic heat is in the form of Electric photon heat energy , $E$ $B=Li=\mu {\frac {Ni}{l}}$ $E=hf$ $f={\frac {\omega }{\lambda }}={\frac {C}{\lambda }}$ $h=p\lambda ={\frac {pC}{f}}$ In general,

$pC=hf$ With

$f>f_{o}$ $f_{o}={\frac {C}{\lambda _{o}}}={\frac {300\times 10^{6}}{400-700nm}}$ 