# Relativistic astrophysics

(Redirected from Relativistic Astrophysics)

PLEASE NOTE THAT THIS PAGE IS A THEORY OF MY OWN AND ONLY A THEORY, NOT A PROVEN POINT THE LORENTZ TRANSFORMATION The universe is constantly expanding. This material covers some of the ideas into that expansion. Most of it is focused around an idea that I call the “bumper effect.” It is a visualization into one of the known equations called the Lorentz transformation. It provides insights into other areas of space and offers a solution to a difficult paradox as well. L=(L_(0^ )∙√(1-v^2/c^2 ))¦ Within this equation is a lot of information. We will maintain what Einstein’s simple idea is correct, that regardless of what speed that a person is traveling, the speed that a light wave is traveling always seems to be the same. Everything is dependent on who is doing the observing. To each person, the changes in length or changes in how fast time is passing (dilation) is correct to each person and neither is wrong. We shall also assume that the Lorentz transformation also holds true. Now, we will consider that we shall build several models of a space ship that will attempt to dilate time using this equation. We will see that each model with variations will have different effects from how the equations work. These shall relate in showing the size of the universe and its expansion. As a stationary observer (like a person standing still on Earth) watches a space ship move closer towards the speed of light with a telescope, the space ship will appear to shrink in size. According to Einstein, his interpretation of the shrinkage and time dilation is correct from his position. From a person on the space ship moving close to the speed of light, looking at the Earth through his telescope, the Earth would appear to be longer as well. Einstein also says that his take on what he perceives for time and length dilation is correct at the same time. More important, also within the equation is a small realization I call the “bumper effect.” Consider a ship that is 1000 meters long. As it moves to the speed 90% to 95% that of light, there will be an obvious and apparent shrinkage. Assuming the ship is equally balanced in mass across length from front to back, as it is accelerating (not just moving the high speed), the front bumper will have the appearance of moving faster towards the center, as the center is accelerating at that rate. The rear will also move closer to the center. From an observer’s point of view, this would make the front bumper slower than the center of the ship and the rear bumper faster than the center of the ship. From this fact, we can extract a great deal of information. For the ship that is 1000m long and moving from 0.90 to 0.95 of the speed of light, we will see the following changes: L=(1000m∙√(1-((〖0.90c)〗^2)/c^2 ))¦= 436m L=(1000m∙√(1-((〖0.95c)〗^2)/c^2 ))¦= 312.25m These are the apparent lengths of the ship. The shrinkage of the ship is the original length minus the change. ΔL=564m ΔL=687.75m The change from each bumper to the center is the total change divided by two. ΔL/2=282m ΔL/2=343.88m Now consider a second ship is 10,000 meters long. The results are very different. L=(10000m∙√(1-((〖0.90c)〗^2)/c^2 ))¦= 4360m L=(10000m∙√(1-((〖0.95c)〗^2)/c^2 ))¦= 3122.5m

ΔL=5640m ΔL=6877.5m ΔL/2=2820m ΔL/2=3438.8m

SPACE WARPAGE Space Warpage: I did not hit much on the importance of warpage of space. First, we know that space can have a warpage, curvature, even in the absence of mass. Second, as we think back to our time ship, we see that as it approaches the speed of light, there is a relatively easier method of calculating curvature from the center of the ship. In the rear though, we have noticed that the curvature is higher because the speed is greater. By taking a firmer look into how this curvature warps along the ship, one could extrapolate the warpage of the front of the ship and rear, beyond the bumpers. A concept that may need further consideration is that weak force and strong force have different lengths at which one seems to have more influence over the other. Gravity also has its own where at extremely close distances, it is far more influential. As we consider the ship once again, we have noted that there is a warpage forward and in the rear of the ship. With this, it is not creating space, but warping it. It is also measurable, usable, and real. Let us consider that we have a planet passing behind a star and we are observing it from a distance. As we watch it pass, the outer edge of the star has a warpage that bends the light coming from the planet. It is not really bending the light, once again, it is the space that is bent and the light is continuing in the straightest line possible. It is the same as the straightest path possible from New York to China to travel is around the surface of the Earth, curved, rather than through the center, as it would be too hot to travel through the core. The lensing around the star allows us to see the planet longer and also allows us to see it quicker as it comes back around the other side. Further, as we study that star more, we might find that there is a star even further out. As we look at the star at a distance pass behind, we can gain more insight into how far the closer one is by more accurately triangulating it. Consider that we are watching the planet continuous and we determine that it is traveling at a certain speed. By observing how much faster the planet appears to be traveling behind the planet and coming from behind the planet, this provides more insight into the gravity of the star, giving more accuracy into the size and density of the star.

So I have put much more thought into the bumper concept and how it flows into the microscopic level. There is still much that I have trouble understanding. One simple concept is the electron tube. Within it, an electron will start at a velocity of zero and instantaneously travel at the speed of light. If you tried to come up with a math that allows it to speed up, like a car, having acceleration until it reaches the speed of light, it would need more distance than given within an electron tube. The exception to this may very well be that as the conditions become right for the electron to jump from anode to cathode, that creation of the right condition is simultaneously altering the length of the electron and the space around it in such a manner that it allows for the jump. It is not violating the one simple condition that the galactic speed limit is the speed of light. This does not offer a complete explanation of how an electron can go from standstill to the speed of light instantaneously.

THE CONNECTION INTO THE MICRO-WORLD It seems to be that the concept of the bumper effect is not only a factor that regulates how things work on a macro-scale of varying sorts, but also one of a micro-scale. Let us consider the electron first. Rather than assuming it is a pretty circle, let us look at it as a wire with a diameter. A concern that I have developed quickly for this theory when I thought about it and had concerns that it would crack the theory all together in a negative way is that I could not immediately think of a way that a wire with electrons running through it changed its space and time. I imagined that with all the electronics that we run all the time, shouldn’t we see some sort of space-time distortion of some sort? It turns out that one of the simplest and most common electronic components use exactly that principle of time-space shrinking and we can see it in action. It is the common fuse. As you watch the common fuse blow in slow motion, you will see that it grows to intensity that it will emit light. Further, as it is approaching its threshold, it also warps the length. At a particular point, it becomes a point where the heat will snap the tiny wire inside. I have also considered other elements around the length of the wire under these circumstances. I questioned why the wire did not shrink more rapidly with applied electrons. The answer is that the electrons are still traveling around the valence shell, only modifying time-space slightly, where if it were working within even closer of the atom, it would have more pronounced effects of shrinkage. So, now that we have a simple component to start with, how does it work, down to a smaller level? As the electron moves around the valence shell, it is modifying the space that it occupies. Imagine that it remains at the speed of light the entire time (or a set speed close to it). As it orbits, if there is more energy applied that the atom takes on, the electron responds by slowing the time that passes on the electron. This in effect, shrinks the space that it occupies, making the orbit smaller. If sufficient energy is applied, If energy is increasing, the matter expands with little exceptions, like water.

FRICTION Friction is generally calculated best today by observational data between two materials. That is different for any two materials and is generally looked up in a book each time it is needed, much as using sine, cosine, and tangents on a chart in the old days. In more modern day, we already have the understanding of how those values of sine, cosine, and tangents come about, but we also now have a quick and more accurate method of calculating those numbers with a calculator. With friction, there is no understanding behind the values, and they are largely on those old charts that have to be looked up in a book. There is also the element of starting friction versus moving friction. Starting friction, when you first start moving something is often larger than when something is already moving. Let us once again take a renewed look at the concept of friction in a very new light. There is a distinct relationship between mass and energy, well defined. There is also one between time and space, which is also well defined. Let us further consider the idea that friction, as we know it to be real, it is for very different reason than we may think. Let us imagine two materials, such as a sheet of metal that is laying on a sheet of glass. As we begin to move the metal sheet that is on top of the glass, let us assume that there is a time-space connection between the two materials. As two atoms have a closeness with one another, there is a unique gravity curve (meaning time and space curvature). As the two materials are moved from one another, that curvature is changing to a new value. The curvature is only present between those two atoms. As we consider the sheets, the planes closest to the planes of opposite material is changing its time dilation. As the material initially begins to move, the connection that existed and a set space that was there, it is physically being bent. There is obviously a force involved and it is calculable. Further, as we now have a moving two materials, with a now bent space-time between the two materials, the masses are moving along with an attraction to one another through a different time-space. All of those materials have a natural connection. Moving through a different time-space is what alters attraction level. Further, as the materials are closer, such as pressed down or with less pressure between them, that also alters the attractive force between the two materials. As most things that revolve around gravity have a very exponential value behind the result, the same holds true with friction, revolving around a curvature. As you imagine rolling around a tonka truck with rubber wheels through the mud, there is a certain stickiness to it. However, As you keep rolling it while picking it up off of the ground, you will notice that friction decreases and then rapidly ceases all together as it is off of the ground. There is a rapid cut off of that force of friction. All of this is not arbitrary, but between any two materials, a very distinct mathematical equation that explains the friction based on time-space curvature on an atomic level. There is not just an element of beauty in understanding how friction works and the glory of humanity in understanding the world around us. There is the practicality that it enables. Some of these things that I explore are multiple “if’s” compounded on one another. Imagine that a quark, the muon is influenced by gravity and none of the other forces as currently thought of today. It is widely created in space today and there are several applications already in consideration for using them as tools if the ability to control them were understood. We could use the muon to travel at the speed of light to travel through the sun where light cannot and give detailed insight into stars. Further, if we had a means of using that as an energy source, it would be abundant as it is a natural phenomena created in stars as a by-product of fusion. Here is how it might work. As I have described friction as a time-space curvature between two materials (defined as a simple word gravity), plates can be set up that are very thin and spinning against one another. Let us assume that we are using magnetism to spin thousands of these plates in different directions offering an opposing force, there would develop a three dimensional field of dense friction and shifting gravity. As the muon is better understood, it is likely to have a very particular half-life that is well altered by this field, normalizing its time, allowing for a quick breakdown. As this occurs, the muon is likely to dissipate into energy that is usable. For use of a tool, the best means of controlling the muon for understanding the star would be to set up one of these friction makers and detectors that we currently have on Earth (only the detector is currently set up), and also then, set up a satellite around the sun that will make these muons. Muons are created in fission reactions as well. A nuclear reactor can be operated in an amplitude modulation fashion, operating it and turning off the reactor at different times and so forth. The receiving detector on Earth could observe the muons normalized from the reactor and gain valuable information as it is turned into a signal. For example, as the signal comes in, there will be the strong carrier wave created, with the natural background signal subtracted from the signal. Further, as the muon deflector (the satellite) takes aim at different parts of the sun, more dense parts will be dampened. This is information that we are gaining of the core of stars. The same can be used to gain information of the core of planets. Further, if the satellite also has a well engineered set of spinning plates, specifically designed, it can have a more calibrated narrow beam of muons aiming towards the detector. Next, we get to how this might create the muons as a power source. It is likely that muons could be a good power source, however, not on earth. If it requires a great deal of energy to create the friction with spinning plates, it is very likely that the detector section of this sort of reactor is going to have to be in a closer orbit of the sun in order to avoid spreading losses that naturally occur. Such a reactor would also be a solar collector at the same time, with the sum of all energies being radiated to the Earth. There are already many, many explorations into how just a handful of these solar collectors in space can power all of the world’s reliance on power.

THE CONNECTION So how is it then that we can draw the connection from the macro to the micro world. The simple answer is that they follow the same rules. First, let examine the electron as an elementary quark, which cannot be broken down further as a neutron or proton can be. While this may prove to be untrue in some distant future, we shall consider the elementary particle for now. Assume that it is the same as the long bar as mentioned previously, however, it is obviously not so long. Rather, its advantage stands in that it is fast, such as really close to the speed of light. In this case, counting on length is less of a concern. In this case, from what was already learned of warping space and time, the electron also consider as a bar. On the front end, time is slower while in the back end, time is faster. From here, this gives the electron a natural wave travel. It maintains a curvature of space that would allow for a wave movement. When it is in orbit of a nucleus of an atom, the difference is that the rotation follows that of the sum of the magnetism between the two sets, along with the curvature of its own. The basic premise of the cloud revolves around partially because of the changing time and it playing catch up from moment to moment. There is more. Consider two electrons that are colliding. How is it that they are traveling at or close to the speed of light and somehow know now not to run into one another when no information can travel faster than the speed of light, how can all that be? It seems as though there is some sort of contradiction. If we consider the electrons as bars, two of them coming head on towards one another, we shall see the answer. Within a distance far enough away, there is a vision that they are coming together, but with little accuracy. As they get within a certain distance from one another, the warped field (time and space) in opposite directions begin to sum together, before the collision is allowed to occur. Let us say that on the forward end of each, where time passes more rapidly and space is more normalized, as they are coming together, they are a quarter way within each other’s field. When the quarter of the warped space within the front of the electron is overlapped with the other’s, they do not simply overlap. A transformation of the space and time occurs. In this instance, space is shrunk (really more like a compressed spring, as it does not disappear, it is just tighter). Time begins to slow on this end as well. At this moment, for each of them, there is a crunched space and slowed time on both ends of both of the electrons. This slower time passing on both of the electrons allows time to seem more in slow motion for both to make a decision for which direction to oppose one another with their charge. If by chance they seem to pick the new direction to follow that will once again lead to a collision, time will once again pass more slowly and push them into another direction. In the event that all of this fails, when they get to a very close distance to one another, the front end of each becomes more crunched in time and space such that the front end of the electron will have the dominating driving force and push each away from one another. Whether that would require the “bar” of the electron to turn around, I do not know, however, it would have to be in a fashion such that it would allow the above scenario to have occurred. Next, we run into the scenario of two electrons traveling in the same direction, but, like two aircraft, one is traveling downwards and one upwards in an attempt to have a midair collision. The same corrective action carries out where time and space choose a new direction to travel to oppose one another. The funny thing is that as we consider two electrons within the same orbital of an atomic shell, this potential of colliding and correction occur all the time. This is partially why we see very wide range of a cloud rather than just following one specific path. If we consider BEC, we can see more of a wave pattern. This is because as energy is almost completely removed, this is also slowing time, normalizing space, and allowing us to see the specific pattern always taken at a much slower rate. If observed often enough, we would see electrons also taking the same approach in attempting collisions and corrections many times over.